Problems
Each problem has a specific set of optional problem_params
described here.
Generic¶
GenericScalar¶
- Has exact solution: false
- Time-dependent: false
- Form: scalar
- Description: solves for generic scalar problem with specified rhs
- Options:
"rhs": 3 // Rhs of the problem "dirichlet_boundary": [ // List of Dirichlet boundaries { "id": 1, // Boundary id "value": 0 // Boundary value }, { "id": 2, // Boundary id "value": "sin(x)+y" // Formulas are supported }], "neumann_boundary": [ // List of Neumann boundaries { "id": 3, // Boundary id "value": 1, // Boundary value }, { "id": 4, // Boundary id "value": "x^2" // Formulas are supported }]
GenericTensor¶
- Has exact solution: false
- Time-dependent: user-selected
- Form: tensor
- Description: solves for generic tensor problem with specified body forces
- Options:
"rhs": [1, 2, 3] // Rhs of the problem "dirichlet_boundary": [ // List of Dirichelt boundaries { "id": 1, // Boundary id "value": [0, 0, 0], // Boundary vector value "dimension": [ // Which dimension are Dirichelt true, true, false // In this case z is free ] }, { "id": 2, // Boundary id "value": ["sin(x)+y", "z^2", 0] // Formulas are supported }], "neumann_boundary": [ // List of Neumann boundaries { "id": 3, // Boundary id "value": [0, 0, 0] // Boundary vector value }, { "id": 4, // Boundary id "value": ["sin(z)+y", "z^2", 0] // Formulas are supported }], "is_time_dependent": false, "initial_solution": [0, 0, 0], "initial_velocity": [0, 0, 0], "initial_acceleration": [0, 0, 0]
Specific¶
CompressionElasticExact¶
- Has exact solution: true
- Time-dependent: false
- Form: tensor
- Description: solve for
\[\begin{align}
f_{2D}(x,y) &= -\begin{bmatrix}(y^3 + x^2 + xy)/20\\ (3x^4 + xy^2 + x)/20\end{bmatrix}\\
f_{3D}(x,y,z) &= -\begin{bmatrix}(xy + x^2 + y^3 + 6z)/14\\ (zx - z^3 + xy^2 + 3x^4)/14\\ (xyz + y^2z^2 - 2x)/14\end{bmatrix}
\end{align}\]
Cubic¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar
- Description: solve for \(f(x,y,z) = (2y-0.9)^4 + 0.1\)
DrivenCavity¶
- Has exact solution: false
- Time-dependent: false
- Form: tensor
- Description: solve for zero right-hand side, and 0.25 for boundary id 1
Elastic¶
- Has exact solution: false
- Time-dependent: false
- Form: tensor
- Description: solve for zero right-hand side, -0.25 for boundary id ⅕, 0.25 for id 3/6
ElasticExact¶
- Has exact solution: true
- Time-dependent: false
- Form: tensor
- Description: solve for
\[\begin{align}
f_{2D}(x,y) &= \begin{bmatrix}(y^3 + x^2 + xy)/50\\ (3x^4 + xy^2 + x)/50\end{bmatrix}\\
f_{3D}(x,y,z) &= \begin{bmatrix}(xy + x^2 + y^3 + 6z)/80\\ (xz - z^3 + xy^2 + 3x^4)/80\\ (xyz + y^2 z^2 - 2x)/80\end{bmatrix}
\end{align}\]
ElasticZeroBC¶
- Has exact solution: false
- Time-dependent: false
- Form: tensor
- Description: solve for [0, 0.5, 0] right-hand side and zero boundary condition
Flow¶
- Has exact solution: false
- Time-dependent: false
- Form: tensor
- Description: solve for zero right-hand side, [0.25, 0, 0] for boundary id ⅓, [0, 0, 0] for 7
Franke¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar
- Description: solves for the 2D and 3D Franke function
Gravity¶
- Has exact solution: false
- Time-dependent: true
- Form: tensor
- Description: solves for 0.1 body force in y direction and zero for boundary 4
Kernel¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar/tensor
- Description: solves the omogenous PDE with
n_kernels
kernels placed on the bounding box atkernel_distance
- Options:
n_kernels
sets the number of kernels,kernel_distance
sets the distance from the bounding box
Linear¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar
- Description: solve for \(f(x,y,z) = x\)
LinearElasticExact¶
- Has exact solution: true
- Time-dependent: false
- Form: tensor
- Description: solve for
\[\begin{align}
f_{2D}(x,y) &= \begin{bmatrix}-(y + x)/50\\ -(3x + y)/50\end{bmatrix}\\
f_{3D}(x,y,z) &= \begin{bmatrix}-(y + x + z)/50\\ -(3x + y - z)/50\\ -(x + y - 2z)/50\end{bmatrix}\\
\end{align}\]
MinSurf¶
- Has exact solution: false
- Time-dependent: false
- Form: scalar
- Description: solve for -10 for rhs, and zero Dirichelt boundary condition
PointBasedTensor¶
- Has exact solution: false
- Time-dependent: false
- Form: tensor
- Description: solves for point-based boudary conditions
- Options:
"scaling": 1, // Scaling factor "rhs": 0, // Right-hand side "translation": [0, 0, 0] // Translation "boundary_ids": [ // List of Dirichelt boundaries { "id": 1, // Boundary id "value": [0, 0, 0] // Boundary vector value }, { "id": 2, "value": { // Rbf interpolated value "function": "", // Function file "points": "", // Points file "rbf": "gaussian", // Rbf kernel "epsilon": 1.5, // Rbf epsilon "coordinate": 2, // Coordinate to ignore "dimension": [ // Which dimension are Dirichlet true, true, false // In this case z is free ] } }, { "id": 2, "value": { // Rbf interpolated value "function": "", // Function file "points": "", // Points file "triangles": "", // Triangles file "coordinate": 2, // Coordinate to ignore } }]
Quadratic¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar
- Description: solve for \(f(x,y,z) = x^2\)
QuadraticElasticExact¶
- Has exact solution: true
- Time-dependent: false
- Form: tensor
- Description: solve for
\[\begin{align}
f_{2D}(x,y) &= \begin{bmatrix} -(y^2 + x^2 + xy)/50\\ -(3x^2 + y)/50\end{bmatrix}\\
f_{3D}(x,y,z) &= \begin{bmatrix}-(y^2 + x^2 + xy + yz)/50\\ -(3x^2 + y + z^2)/50\\ -(xz + y^2 - 2z)/50\end{bmatrix}
\end{align}\]
Sine¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar
- Description: solve for
\[\begin{align}
f(x,y) &= \sin(10x)\sin(10y)\\
f(x,y,z) &= \sin(10x)\sin(10y)\sin(10z)
\end{align}\]
TestProblem¶
- Has exact solution: true
- Time-dependent: false
- Form: scalar
- Description: solve for extreme problem to test errors for high order discretizations
TimeDependentFlow¶
- Has exact solution: false
- Time-dependent: true
- Form: tensor
- Description: solve for zero right-hand side, [0.25, 0, 0] for boundary id ⅓, [0, 0, 0] for 7, and zero inital velocity
TimeDependentScalar¶
- Has exact solution: false
- Time-dependent: true
- Form: scalar
- Description: solve for one right-hand side, zero boundary condition, and zero time boundary
TorsionElastic¶
- Has exact solution: false
- Time-dependent: false
- Form: tensor
- Description: solve for zero body forces,
fixed_boundary
fixed (zero displacement),turning_boundary
rotating aroundaxis_coordiante
forn_turns
- Options:
fixed_boundary
id of the fixed boundary,turning_boundary
id of the moving boundary,axis_coordiante
coordinate of the rotating axis,n_turns
number of turns
Zero_BC¶
- Has exact solution: true
- Time-dependent: false
- Form: tensor
- Description: solve for
\[\begin{align}
f_{2D}(x,y) &= (1 - x) x^2 y (1-y)^2\\
f_{3D}(x,y,z) &= (1 - x) x^2 y (1-y)^2 z (1 - z)
\end{align}\]
Last update:
2023-10-03