Skip to content

Formulations

The following formulations are available in the PolyFEM list of possible formulations. The constants can be set in params. All formulations support boundary conditions. For the elasticity formulations we output:

Cauchy stress tensor

σ=1JΨFFT

Frist Piola Kirchhoff stress tensor (Wikipedia)

P=JσFT

Second Piola Kirchhoff stress tensor (Wikipedia)

S=JF1σFT,

where Ψ is the energy density, F the deformation gradient, and J=det(F).

Scalar

Laplacian

  • Constants: none
  • Description: solve for Δu=f

Bilaplacian (mixed)

  • Constants: none
  • Description: solve for Δ2u=f

Helmholtz

  • Constants: k
  • Description: solve for Δuk2u=f

Tensor

Linear Elasticity

  • Constants: E/nu, lambda/mu
  • Description: solve for div(σ[u])=f where
σ[u]=2μϵ[u]+λtr(ϵ[u])Iϵ[u]=12(uT+u)

Hooke Linear Elasticity

  • Constants: elasticity_tensor, E/nu, lambda/mu
  • Description: solve for div(σ[u])=f where
σ[u]=C:ϵ[u]ϵ[u]=12(uT+u)

where C is the elasticity tensor

Incompressible Linear Elasticity (mixed)

  • Constants: E/nu, lambda/mu
  • Description: solve for
div(2μϵ[u]+pI)=fdiv(u)λ1p=0

Saint Venant–Kirchoff Elasticity

  • Constants: elasticity_tensor, E/nu, lambda/mu
  • Description: solve for div(σ[u])=f where
σ[u]=C:ϵ[u]ϵ[u]=12(uTu+uT+u)

where C is the elasticity tensor

NeoHookean Elasticity

  • Constants: E/nu, lambda/mu
  • Description: solve for div(σ[u])=f where
σ[u]=μ(F[u]F[u]T)+λln(detF[u])F[u]TF[u]=u+I

Mooney-Rivlin Elasticity

  • Constants: c1/c2/k=1
  • Description: solve for div(σ[u])=f where σ[u]=uΨ[u]. The energy density Ψ is
Ψ[u]=c1(I1~d)+c2(I2~d)+k2ln2(J)

where d is the dimension (2 or 3),

F=u+I,J=det(F),F~=1JdF,C~=F~F~T,I1~=tr(C~),andI2~=12((trC~)2tr(C~2)).

Incompressible Ogden Elasticity

  • Constants: c/m/k
  • Description: solve for div(σ[u])=f where σ[u]=uΨ[u]. The energy density Ψ is
Ψ[u]=i=1Ncimi2(j=1dλ~jmid)+12Kln(J)2

where N, the number of terms, is dictated by the number of coefficients given, d is the dimension (2 or 3), J=det(F) where F=u+I, and λ~j=J1dλj are the eigenvalues of F~ (same as in the Mooney-Rivlin Elasticity).

Unconstrained Ogden Elasticity

  • Constants: mus/alphas/Ds
  • Description: solve for div(σ[u])=f where σ[u]=uΨ[u]. The energy density Ψ is
Ψ[u]=i=1N2μiαi2(j=1dλ~jαid)+i=1N(J1)2iDi

where N, the number of terms, is dictated by the number of coefficients given, d is the dimension (2 or 3), J=det(F) where F=u+I, and λ~j=J1dλj where λj are the eigenvalues of F.

Viscous Damping

  • Constants: phi/psi
  • Description: an extra energy that represents dissipation, adding to the elastic energy in transient problems
R(F,F˙)=ψE˙(F,F˙)2+ϕ2tr2E˙(F,F˙)

where F[u]=u+I and E[u]=12(FTFI).

The above corresponds to the viscous Piola-Kirchhoff stress

P=F(2ψE˙+ϕtr(E˙)I)=2R(F,F˙).

Stokes (mixed)

  • Constants: viscosity (ν)
  • Description: solve for
νΔu+p=fdiv(u)=0
  • Constants: viscosity (ν)
  • Description: solve for
uuνΔu+p=fdiv(u)=0

Implementing New Formulations

Todo

Describe how to implement a new formulation in C++.


Last update: 2023-10-03