22#include <igl/per_face_normals.h>
27 using namespace assembler;
28 using namespace basis;
32 void flattened_tensor_coeffs(
const Eigen::MatrixXd &S, Eigen::MatrixXd &X)
36 X.resize(S.rows(), 3);
41 else if (S.cols() == 9)
44 X.resize(S.rows(), 6);
54 logger().error(
"Invalid tensor dimensions.");
61 const bool is_problem_scalar,
62 const std::vector<basis::ElementBases> &bases,
63 const std::vector<basis::ElementBases> &gbases,
64 const Eigen::MatrixXd &pts,
65 const Eigen::MatrixXi &
faces,
66 const Eigen::MatrixXd &fun,
67 const bool compute_avg,
68 Eigen::MatrixXd &result)
72 logger().error(
"Solve the problem first!");
77 const Mesh3D &mesh3d =
dynamic_cast<const Mesh3D &
>(mesh);
79 Eigen::MatrixXd points, uv;
80 Eigen::VectorXd weights;
83 if (!is_problem_scalar)
86 igl::AABB<Eigen::MatrixXd, 3> tree;
87 tree.init(pts,
faces);
89 result.resize(
faces.rows(), actual_dim);
90 result.setConstant(std::numeric_limits<double>::quiet_NaN());
101 const int face_id = mesh3d.
cell_face(e, lf);
124 for (
size_t j = 0; j < bs.
bases.size(); ++j)
129 for (
int d = 0; d < actual_dim; ++d)
131 for (
size_t g = 0; g < v.
global.size(); ++g)
133 loc_val(d) += (v.
global[g].val * v.
val.array() * fun(v.
global[g].index * actual_dim + d) * weights.array()).sum();
139 Eigen::RowVector3d C;
142 const double dist = tree.squared_distance(pts,
faces, bary, I, C);
143 assert(dist < 1e-16);
145 assert(std::isnan(result(I, 0)));
147 result.row(I) = loc_val / weights.sum();
149 result.row(I) = loc_val;
154 assert(counter == result.rows());
159 const bool is_problem_scalar,
161 const std::vector<basis::ElementBases> &bases,
162 const std::vector<basis::ElementBases> &gbases,
163 const Eigen::VectorXi &disc_orders,
164 const Eigen::VectorXi &disc_ordersq,
165 const std::map<int, Eigen::MatrixXd> &polys,
166 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
171 const Eigen::MatrixXd &fun,
172 std::vector<assembler::Assembler::NamedMatrix> &result_scalar,
173 std::vector<assembler::Assembler::NamedMatrix> &result_tensor,
174 const bool use_sampler,
175 const bool boundary_only)
177 result_scalar.clear();
178 result_tensor.clear();
182 logger().error(
"Solve the problem first!");
185 if (is_problem_scalar)
187 logger().error(
"Define a tensor problem!");
191 assert(!is_problem_scalar);
194 std::vector<Eigen::MatrixXd> avg_scalar;
196 Eigen::MatrixXd areas(n_bases, 1);
199 std::vector<std::pair<std::string, Eigen::MatrixXd>> tmp_s;
200 Eigen::MatrixXd local_val;
203 for (
int i = 0; i < int(bases.size()); ++i)
207 Eigen::MatrixXd local_pts;
234 vals.compute(i, actual_dim == 3, bases[i], gbases[i]);
236 const double area = (
vals.det.array() *
quadrature.weights.array()).sum();
243 for (
size_t j = 0; j < bs.
bases.size(); ++j)
246 if (b.
global().size() > 1)
249 auto &global = b.
global().front();
250 areas(global.index) += area;
253 if (avg_scalar.empty())
255 avg_scalar.resize(tmp_s.size());
256 for (
auto &m : avg_scalar)
258 m.resize(n_bases, 1);
263 for (
int k = 0; k < tmp_s.size(); ++k)
265 local_val = tmp_s[k].second;
267 for (
size_t j = 0; j < bs.
bases.size(); ++j)
270 if (b.
global().size() > 1)
273 auto &global = b.
global().front();
274 avg_scalar[k](global.index) += local_val(j) * area;
279 for (
auto &m : avg_scalar)
281 m.array() /= areas.array();
284 result_scalar.resize(tmp_s.size());
285 for (
int k = 0; k < tmp_s.size(); ++k)
287 result_scalar[k].first = tmp_s[k].first;
288 interpolate_function(mesh, 1, bases, disc_orders, disc_ordersq, polys, polys_3d, sampler, n_points,
289 avg_scalar[k], result_scalar[k].second, use_sampler, boundary_only);
296 const bool is_problem_scalar,
297 const std::vector<basis::ElementBases> &bases,
298 const std::vector<basis::ElementBases> &gbases,
299 const Eigen::VectorXi &disc_orders,
300 const Eigen::VectorXi &disc_ordersq,
302 const Eigen::MatrixXd &fun,
304 Eigen::MatrixXd &result,
305 Eigen::VectorXd &von_mises)
314 logger().error(
"Solve the problem first!");
317 if (is_problem_scalar)
319 logger().error(
"Define a tensor problem!");
324 assert(!is_problem_scalar);
326 Eigen::MatrixXd local_val, local_stress, local_mises;
328 int num_quadr_pts = 0;
329 result.resize(disc_orders.sum(), actual_dim == 2 ? 3 : 6);
331 von_mises.resize(disc_orders.sum(), 1);
342 f.get_quadrature(disc_orders(e), quadr);
347 f.get_quadrature(disc_orders(e), quadr);
355 f.get_quadrature(disc_orders(e), quadr);
360 f.get_quadrature(disc_orders(e), quadr);
368 f.get_quadrature(disc_orders(e), disc_ordersq(e), quadr);
375 std::vector<std::pair<std::string, Eigen::MatrixXd>> tmp_s, tmp_t;
380 local_mises = tmp_s[0].second;
381 local_val = tmp_t[0].second;
383 if (num_quadr_pts + local_val.rows() >= result.rows())
385 result.conservativeResize(
386 std::max(num_quadr_pts + local_val.rows() + 1, 2 * result.rows()),
388 von_mises.conservativeResize(result.rows(), von_mises.cols());
390 flattened_tensor_coeffs(local_val, local_stress);
391 result.block(num_quadr_pts, 0, local_stress.rows(), local_stress.cols()) = local_stress;
392 von_mises.block(num_quadr_pts, 0, local_mises.rows(), local_mises.cols()) = local_mises;
393 num_quadr_pts += local_val.rows();
395 result.conservativeResize(num_quadr_pts, result.cols());
396 von_mises.conservativeResize(num_quadr_pts, von_mises.cols());
401 const bool is_problem_scalar,
402 const std::vector<basis::ElementBases> &bases,
403 const Eigen::VectorXi &disc_orders,
404 const Eigen::VectorXi &disc_ordersq,
405 const std::map<int, Eigen::MatrixXd> &polys,
406 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
409 const Eigen::MatrixXd &fun,
410 Eigen::MatrixXd &result,
411 const bool use_sampler,
412 const bool boundary_only)
415 if (!is_problem_scalar)
418 polys, polys_3d, sampler, n_points,
419 fun, result, use_sampler, boundary_only);
424 const std::vector<basis::ElementBases> &gbasis,
425 const std::vector<basis::ElementBases> &basis,
426 const Eigen::VectorXi &disc_orders,
427 const std::map<int, Eigen::MatrixXd> &polys,
428 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
431 const Eigen::MatrixXd &fun,
432 Eigen::Vector<bool, -1> &result,
433 const bool use_sampler,
434 const bool boundary_only)
438 logger().error(
"Solve the problem first!");
442 result.setZero(n_points);
446 Eigen::MatrixXi vis_faces_poly, vis_edges_poly;
450 for (
int i = 0; i < int(basis.size()); ++i)
453 Eigen::MatrixXd local_pts;
467 sampler.
sample_polyhedron(polys_3d.at(i).first, polys_3d.at(i).second, local_pts, vis_faces_poly, vis_edges_poly);
469 sampler.
sample_polygon(polys.at(i), local_pts, vis_faces_poly, vis_edges_poly);
494 if (std::find(invalidList.begin(), invalidList.end(), i) != invalidList.end())
495 result.segment(index, local_pts.rows()).array() =
true;
496 index += local_pts.rows();
502 const int actual_dim,
503 const std::vector<basis::ElementBases> &basis,
504 const Eigen::VectorXi &disc_orders,
505 const Eigen::VectorXi &disc_ordersq,
506 const std::map<int, Eigen::MatrixXd> &polys,
507 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
510 const Eigen::MatrixXd &fun,
511 Eigen::MatrixXd &result,
512 const bool use_sampler,
513 const bool boundary_only)
517 logger().error(
"Solve the problem first!");
521 std::vector<AssemblyValues> tmp;
523 result.resize(n_points, actual_dim);
527 Eigen::MatrixXi vis_faces_poly, vis_edges_poly;
529 for (
int i = 0; i < int(basis.size()); ++i)
532 Eigen::MatrixXd local_pts;
548 sampler.
sample_polyhedron(polys_3d.at(i).first, polys_3d.at(i).second, local_pts, vis_faces_poly, vis_edges_poly);
550 sampler.
sample_polygon(polys.at(i), local_pts, vis_faces_poly, vis_edges_poly);
577 Eigen::MatrixXd local_res = Eigen::MatrixXd::Zero(local_pts.rows(), actual_dim);
579 for (
size_t j = 0; j < bs.
bases.size(); ++j)
583 for (
int d = 0; d < actual_dim; ++d)
585 for (
size_t ii = 0; ii < b.
global().size(); ++ii)
586 local_res.col(d) += b.
global()[ii].val * tmp[j].val * fun(b.
global()[ii].index * actual_dim + d);
590 result.block(index, 0, local_res.rows(), actual_dim) = local_res;
591 index += local_res.rows();
597 const bool is_problem_scalar,
598 const std::vector<basis::ElementBases> &bases,
599 const std::vector<basis::ElementBases> &gbases,
601 const Eigen::MatrixXd &local_pts,
602 const Eigen::MatrixXd &fun,
603 Eigen::MatrixXd &result,
604 Eigen::MatrixXd &result_grad)
607 if (!is_problem_scalar)
610 local_pts, fun, result, result_grad);
615 const int actual_dim,
616 const std::vector<basis::ElementBases> &bases,
617 const std::vector<basis::ElementBases> &gbases,
619 const Eigen::MatrixXd &local_pts,
620 const Eigen::MatrixXd &fun,
621 Eigen::MatrixXd &result,
622 Eigen::MatrixXd &result_grad)
626 logger().error(
"Solve the problem first!");
630 assert(local_pts.cols() == mesh.
dimension());
631 assert(fun.cols() == 1);
639 result.resize(
vals.val.rows(), actual_dim);
642 result_grad.resize(
vals.val.rows(), mesh.
dimension() * actual_dim);
643 result_grad.setZero();
645 const int n_loc_bases = int(
vals.basis_values.size());
647 for (
int i = 0; i < n_loc_bases; ++i)
649 const auto &
val =
vals.basis_values[i];
651 for (
size_t ii = 0; ii <
val.global.size(); ++ii)
653 for (
int d = 0; d < actual_dim; ++d)
655 result.col(d) +=
val.global[ii].val * fun(
val.global[ii].index * actual_dim + d) *
val.val;
656 result_grad.block(0, d *
val.grad_t_m.cols(), result_grad.rows(),
val.grad_t_m.cols()) +=
val.global[ii].val * fun(
val.global[ii].index * actual_dim + d) *
val.grad_t_m;
666 logger().error(
"Solve the problem first!");
670 assert(fun.cols() == 1);
672 result.resize(
vals.val.rows(), actual_dim);
675 result_grad.resize(
vals.val.rows(), dim * actual_dim);
676 result_grad.setZero();
678 const int n_loc_bases = int(
vals.basis_values.size());
680 for (
int i = 0; i < n_loc_bases; ++i)
682 const auto &
val =
vals.basis_values[i];
684 for (
size_t ii = 0; ii <
val.global.size(); ++ii)
686 for (
int d = 0; d < actual_dim; ++d)
688 result.col(d) +=
val.global[ii].val * fun(
val.global[ii].index * actual_dim + d) *
val.val;
689 result_grad.block(0, d *
val.grad_t_m.cols(), result_grad.rows(),
val.grad_t_m.cols()) +=
val.global[ii].val * fun(
val.global[ii].index * actual_dim + d) *
val.grad_t_m;
697 const bool is_problem_scalar,
698 const std::vector<basis::ElementBases> &bases,
699 const std::vector<basis::ElementBases> &gbases,
700 const Eigen::VectorXi &disc_orders,
701 const Eigen::VectorXi &disc_ordersq,
702 const std::map<int, Eigen::MatrixXd> &polys,
703 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
706 const Eigen::MatrixXd &fun,
708 const bool use_sampler,
709 const bool boundary_only)
713 logger().error(
"Solve the problem first!");
717 assert(!is_problem_scalar);
719 Eigen::MatrixXi vis_faces_poly, vis_edges_poly;
721 std::vector<std::pair<std::string, Eigen::MatrixXd>> tmp_s;
723 for (
int i = 0; i < int(bases.size()); ++i)
730 Eigen::MatrixXd local_pts;
743 sampler.
sample_polyhedron(polys_3d.at(i).first, polys_3d.at(i).second, local_pts, vis_faces_poly, vis_edges_poly);
745 sampler.
sample_polygon(polys.at(i), local_pts, vis_faces_poly, vis_edges_poly);
774 for (
const auto &s : tmp_s)
775 if (std::isnan(s.second.norm()))
784 const bool is_problem_scalar,
785 const std::vector<basis::ElementBases> &bases,
786 const std::vector<basis::ElementBases> &gbases,
787 const Eigen::VectorXi &disc_orders,
788 const Eigen::VectorXi &disc_ordersq,
789 const std::map<int, Eigen::MatrixXd> &polys,
790 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
794 const Eigen::MatrixXd &fun,
796 std::vector<assembler::Assembler::NamedMatrix> &result,
797 const bool use_sampler,
798 const bool boundary_only)
802 logger().error(
"Solve the problem first!");
808 assert(!is_problem_scalar);
812 Eigen::MatrixXi vis_faces_poly, vis_edges_poly;
813 std::vector<std::pair<std::string, Eigen::MatrixXd>> tmp_s;
815 for (
int i = 0; i < int(bases.size()); ++i)
822 Eigen::MatrixXd local_pts;
835 sampler.
sample_polyhedron(polys_3d.at(i).first, polys_3d.at(i).second, local_pts, vis_faces_poly, vis_edges_poly);
837 sampler.
sample_polygon(polys.at(i), local_pts, vis_faces_poly, vis_edges_poly);
868 result.resize(tmp_s.size());
869 for (
int k = 0; k < tmp_s.size(); ++k)
871 result[k].first = tmp_s[k].first;
872 result[k].second.resize(n_points, 1);
876 for (
int k = 0; k < tmp_s.size(); ++k)
878 assert(local_pts.rows() == tmp_s[k].second.rows());
879 result[k].second.block(index, 0, tmp_s[k].second.rows(), 1) = tmp_s[k].second;
881 index += local_pts.rows();
887 const bool is_problem_scalar,
888 const std::vector<basis::ElementBases> &bases,
889 const std::vector<basis::ElementBases> &gbases,
890 const Eigen::VectorXi &disc_orders,
891 const Eigen::VectorXi &disc_ordersq,
892 const std::map<int, Eigen::MatrixXd> &polys,
893 const std::map<
int, std::pair<Eigen::MatrixXd, Eigen::MatrixXi>> &polys_3d,
897 const Eigen::MatrixXd &fun,
899 std::vector<assembler::Assembler::NamedMatrix> &result,
900 const bool use_sampler,
901 const bool boundary_only)
905 logger().error(
"Solve the problem first!");
912 assert(!is_problem_scalar);
916 Eigen::MatrixXi vis_faces_poly, vis_edges_poly;
917 std::vector<std::pair<std::string, Eigen::MatrixXd>> tmp_t;
919 for (
int i = 0; i < int(bases.size()); ++i)
926 Eigen::MatrixXd local_pts;
939 sampler.
sample_polyhedron(polys_3d.at(i).first, polys_3d.at(i).second, local_pts, vis_faces_poly, vis_edges_poly);
941 sampler.
sample_polygon(polys.at(i), local_pts, vis_faces_poly, vis_edges_poly);
972 result.resize(tmp_t.size());
973 for (
int k = 0; k < tmp_t.size(); ++k)
975 result[k].first = tmp_t[k].first;
976 result[k].second.resize(n_points, actual_dim * actual_dim);
980 for (
int k = 0; k < tmp_t.size(); ++k)
982 assert(local_pts.rows() == tmp_t[k].second.rows());
983 result[k].second.block(index, 0, tmp_t[k].second.rows(), tmp_t[k].second.cols()) = tmp_t[k].second;
985 index += local_pts.rows();
991 const std::shared_ptr<mesh::MeshNodes> mesh_nodes)
993 Eigen::MatrixXd func;
994 func.setZero(n_bases, mesh_nodes->node_position(0).size());
996 for (
int i = 0; i < n_bases; i++)
997 func.row(i) = mesh_nodes->node_position(i);
1004 const std::shared_ptr<mesh::MeshNodes> mesh_nodes,
1005 const Eigen::MatrixXd &grad)
1011 const std::vector<basis::ElementBases> &bases,
1012 const std::vector<basis::ElementBases> &gbases,
1013 const Eigen::MatrixXd &fun,
1015 const int actual_dim)
1017 Eigen::VectorXd result;
1018 result.setZero(actual_dim);
1019 for (
int e = 0; e < bases.size(); ++e)
1024 Eigen::MatrixXd u, grad_u;
1028 result += u.transpose() *
da;
ElementAssemblyValues vals
std::vector< Eigen::VectorXi > faces
virtual void compute_scalar_value(const OutputData &data, std::vector< NamedMatrix > &result) const
virtual void compute_tensor_value(const OutputData &data, std::vector< NamedMatrix > &result) const
stores per local bases evaluations
std::vector< basis::Local2Global > global
stores per element basis values at given quadrature points and geometric mapping
void compute(const int el_index, const bool is_volume, const Eigen::MatrixXd &pts, const basis::ElementBases &basis, const basis::ElementBases &gbasis)
computes the per element values at the local (ref el) points (pts) sets basis_values,...
Represents one basis function and its gradient.
const std::vector< Local2Global > & global() const
Stores the basis functions for a given element in a mesh (facet in 2d, cell in 3d).
void evaluate_bases(const Eigen::MatrixXd &uv, std::vector< assembler::AssemblyValues > &basis_values) const
evaluate stored bases at given points on the reference element saves results to basis_values
std::vector< Basis > bases
one basis function per node in the element
static Eigen::MatrixXd generate_linear_field(const int n_bases, const std::shared_ptr< mesh::MeshNodes > mesh_nodes, const Eigen::MatrixXd &grad)
static void interpolate_at_local_vals(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const int el_index, const Eigen::MatrixXd &local_pts, const Eigen::MatrixXd &fun, Eigen::MatrixXd &result, Eigen::MatrixXd &result_grad)
interpolate solution and gradient at element (calls interpolate_at_local_vals with sol)
static void average_grad_based_function(const mesh::Mesh &mesh, const bool is_problem_scalar, const int n_bases, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::VectorXi &disc_orders, const Eigen::VectorXi &disc_ordersq, const std::map< int, Eigen::MatrixXd > &polys, const std::map< int, std::pair< Eigen::MatrixXd, Eigen::MatrixXi > > &polys_3d, const assembler::Assembler &assembler, const utils::RefElementSampler &sampler, const double t, const int n_points, const Eigen::MatrixXd &fun, std::vector< assembler::Assembler::NamedMatrix > &result_scalar, std::vector< assembler::Assembler::NamedMatrix > &result_tensor, const bool use_sampler, const bool boundary_only)
computes scalar quantity of funtion (ie von mises for elasticity and norm of velocity for fluid) the ...
static Eigen::MatrixXd get_bases_position(const int n_bases, const std::shared_ptr< mesh::MeshNodes > mesh_nodes)
static void compute_scalar_value(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::VectorXi &disc_orders, const Eigen::VectorXi &disc_ordersq, const std::map< int, Eigen::MatrixXd > &polys, const std::map< int, std::pair< Eigen::MatrixXd, Eigen::MatrixXi > > &polys_3d, const assembler::Assembler &assembler, const utils::RefElementSampler &sampler, const int n_points, const Eigen::MatrixXd &fun, const double t, std::vector< assembler::Assembler::NamedMatrix > &result, const bool use_sampler, const bool boundary_only)
computes scalar quantity of funtion (ie von mises for elasticity and norm of velocity for fluid)
static void compute_tensor_value(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::VectorXi &disc_orders, const Eigen::VectorXi &disc_ordersq, const std::map< int, Eigen::MatrixXd > &polys, const std::map< int, std::pair< Eigen::MatrixXd, Eigen::MatrixXi > > &polys_3d, const assembler::Assembler &assembler, const utils::RefElementSampler &sampler, const int n_points, const Eigen::MatrixXd &fun, const double t, std::vector< assembler::Assembler::NamedMatrix > &result, const bool use_sampler, const bool boundary_only)
compute tensor quantity (ie stress tensor or velocy)
bool check_scalar_value(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::VectorXi &disc_orders, const Eigen::VectorXi &disc_ordersq, const std::map< int, Eigen::MatrixXd > &polys, const std::map< int, std::pair< Eigen::MatrixXd, Eigen::MatrixXi > > &polys_3d, const assembler::Assembler &assembler, const utils::RefElementSampler &sampler, const Eigen::MatrixXd &fun, const double t, const bool use_sampler, const bool boundary_only)
checks if mises are not nan
static void interpolate_boundary_function(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::MatrixXd &pts, const Eigen::MatrixXi &faces, const Eigen::MatrixXd &fun, const bool compute_avg, Eigen::MatrixXd &result)
computes integrated solution (fun) per surface face.
static void mark_flipped_cells(const mesh::Mesh &mesh, const std::vector< basis::ElementBases > &gbasis, const std::vector< basis::ElementBases > &basis, const Eigen::VectorXi &disc_orders, const std::map< int, Eigen::MatrixXd > &polys, const std::map< int, std::pair< Eigen::MatrixXd, Eigen::MatrixXi > > &polys_3d, const utils::RefElementSampler &sampler, const int n_points, const Eigen::MatrixXd &fun, Eigen::Vector< bool, -1 > &result, const bool use_sampler, const bool boundary_only)
static void interpolate_function(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const Eigen::VectorXi &disc_orders, const Eigen::VectorXi &disc_ordersq, const std::map< int, Eigen::MatrixXd > &polys, const std::map< int, std::pair< Eigen::MatrixXd, Eigen::MatrixXi > > &polys_3d, const utils::RefElementSampler &sampler, const int n_points, const Eigen::MatrixXd &fun, Eigen::MatrixXd &result, const bool use_sampler, const bool boundary_only)
interpolate the function fun.
static void compute_stress_at_quadrature_points(const mesh::Mesh &mesh, const bool is_problem_scalar, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::VectorXi &disc_orders, const Eigen::VectorXi &disc_ordersq, const assembler::Assembler &assembler, const Eigen::MatrixXd &fun, const double t, Eigen::MatrixXd &result, Eigen::VectorXd &von_mises)
compute von mises stress at quadrature points for the function fun, also compute the interpolated fun...
static Eigen::VectorXd integrate_function(const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::MatrixXd &fun, const int dim, const int actual_dim)
virtual int n_cell_faces(const int c_id) const =0
virtual int cell_face(const int c_id, const int lf_id) const =0
Abstract mesh class to capture 2d/3d conforming and non-conforming meshes.
int n_elements() const
utitlity to return the number of elements, cells or faces in 3d and 2d
virtual RowVectorNd face_barycenter(const int f) const =0
face barycenter
bool is_cube(const int el_id) const
checks if element is cube compatible
virtual bool is_boundary_face(const int face_global_id) const =0
is face boundary
bool is_simplex(const int el_id) const
checks if element is simplex
bool is_prism(const int el_id) const
checks if element is a prism
virtual bool is_volume() const =0
checks if mesh is volume
int dimension() const
utily for dimension
virtual bool is_boundary_element(const int element_global_id) const =0
is cell boundary
static void quadrature_for_quad_face(int index, int order, const int gid, const mesh::Mesh &mesh, Eigen::MatrixXd &uv, Eigen::MatrixXd &points, Eigen::VectorXd &weights)
static void quadrature_for_tri_face(int index, int order, const int gid, const mesh::Mesh &mesh, Eigen::MatrixXd &uv, Eigen::MatrixXd &points, Eigen::VectorXd &weights)
static void quadrature_for_prism_face(int index, int orderp, int orderq, const int gid, const mesh::Mesh &mesh, Eigen::MatrixXd &uv, Eigen::MatrixXd &points, Eigen::VectorXd &weights)
const Eigen::MatrixXd & prism_points() const
void sample_polygon(const Eigen::MatrixXd &poly, Eigen::MatrixXd &pts, Eigen::MatrixXi &faces, Eigen::MatrixXi &edges) const
const Eigen::MatrixXd & simplex_points() const
void sample_polyhedron(const Eigen::MatrixXd &vertices, const Eigen::MatrixXi &f, Eigen::MatrixXd &pts, Eigen::MatrixXi &faces, Eigen::MatrixXi &edges) const
const Eigen::MatrixXd & cube_points() const
void q_nodes_2d(const int q, Eigen::MatrixXd &val)
void prism_nodes_3d(const int p, const int q, Eigen::MatrixXd &val)
void p_nodes_2d(const int p, Eigen::MatrixXd &val)
void p_nodes_3d(const int p, Eigen::MatrixXd &val)
void q_nodes_3d(const int q, Eigen::MatrixXd &val)
std::vector< int > count_invalid(const int dim, const std::vector< basis::ElementBases > &bases, const std::vector< basis::ElementBases > &gbases, const Eigen::VectorXd &u)
Eigen::VectorXd flatten(const Eigen::MatrixXd &X)
Flatten rowwises.
spdlog::logger & logger()
Retrieves the current logger.
Eigen::Matrix< double, 1, Eigen::Dynamic, Eigen::RowMajor, 1, 3 > RowVectorNd